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Abstract

The strength reliability of linearly elastic, brittle, stochastically heterogeneous beams, is studied on the basis of the

weakest link approach. The analysis is formulated by a functional perturbation method, resulting in an analytical

solution of the failure probability of the beam. Heterogeneity (material morphology) is random and confined to lon-

gitudinal direction only, under Bernoulli assumptions. The problem is statically indeterminate and external loads are

not random. The stress field is random and functionally dependent on morphology. In particular, local strength is also a

function of modulus. Therefore, the strength reliability of the beam is morphology dependent, both through static

indeterminacy and local strength-modulus correlation. The above is also coupled with the probabilistic nature of

strength, associated with surface defects and irregularities. The case of single indeterminacy (clamped––simply sup-

ported beam) is investigated, for simplicity. It is shown that the strength of the beam is significantly affected by material

morphology and that the effect can be either positive (increased strength) or negative, depending on the strength-moduli

correlation. For example, for an effective grain size of L=10, and a compliance statistical variance of 1/12, the mor-

phology effect on the allowable design load, was found to be in the order of 10%. Calculation of size effect, corre-

sponding to strength, showed a complex, non-classical grain size dependency.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Strength; Failure; Reliability; Beam; Elasticity; Probability; Heterogeneity; Morphology; Correlation; Static indeterminacy
1. Introduction

The analysis of structures involving spatially random material properties and/or random geometry has

been a major field of research for the past few decades. Interest has emerged from the motivation to find the

effective (bulk) elastic modulus in terms of microstructure morphology: Hill (1952) showed that the results

of Voigt (1887, uniform strain assumption) and Reuss (1929, uniform stress assumption) are upper and

lower bounds for the effective modulus. Finer bounds have been found using variational principles (Hashin

and Shtrikman, 1962), perturbation expansion (Kr€ooner, 1986), homogenization and others methods

(Mason and Adams, 1999).
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In all of the above studies the size of the micro-scale was assumed to be significantly (few orders) smaller

than the macro-scale, and representative volume element (RVE) or effective (non-random) bulk properties

could be assumed. In recent years, technology progress poses new challenges in predicting the mechanical

behavior of stochastic heterogeneous structures for which such assumptions cannot be applied. For ex-
ample, micro-scale structures used in MEMS/NEMS devices are routinely manufactured from brittle

polycrystals (like polysilicon) in which the stress concentration volume is comprised of very few grains.

Nanowires and nanotubes which are expected to have important applications in computers, bioengineering

and communication, are locally anisotropic, having a non-negligible substructure size. Other examples are

porous ceramics (Nanjangus et al., 1995) and bones (Keyak et al., 1994), for which local mechanical

properties are random, and strongly dependent upon local density. In many cases, materials are linear

elastic, brittle, with dominant probabilistic strength distribution (Jones et al., 1999; Greek et al., 1999;

Sharpe et al., 1999; Namazu et al., 2000; Davidge, 1979). Recent studies show that the mechanical response
of these structures deviate significantly from the prediction based on effective properties (Mirfendereski

et al., 1992; Altus, 2001; Altus and Givli, 2003; Frantziskonis and Breysse, 2003).

Consider as a simple reference problem the strength reliability of a homogeneous Euler–Bernoulli beam,

subjected to a non-random external loading. For statically determinate cases, the stresses are independent

of moduli. Failure is governed by surface defects and their local stress variations, which are random.

Therefore, if the failure probability of a unit length of the beam is obtained experimentally, the strength

reliability of the whole beam can be found by direct integration, using the weakest link concept. This type of

problem has been studied extensively both for static (Elishakoff, 1983) and dynamic (Lin and Cai, 1995)
conditions.

Heterogeneous structures pose new challenges with regard to strength analysis, which can be divided into

two categories: (1) Consideration of local stress concentrations caused by compatibility requirements. These

are common in granular or polycrystal materials where high stress concentrations are found near grain

boundaries and other regions of abrupt moduli change. The problem has been addressed mainly by nu-

merical studies (Frantziskonis et al., 1997; Harder, 1999; Starzewski and Stahl, 2000; Barbe et al., 2000a,b).

(2) Considering cases of statically indeterminate heterogeneous structures, where reaction forces are ran-

domly coupled with moduli morphology (Altus, 2001) through external (global) compatibility conditions.
Both types exist in practice. Their source is similar, i.e., compatibility requirements, but of a different

type: the first is local (and is much more difficult to approach analytically), and the second is global. This

paper focuses on the heterogeneity effect of the second type only. Moreover, moduli heterogeneity is

confined to the beam�s longitudinal direction, for simplicity of derivation.

It should be noted that the general problem of strength of heterogeneous media, including morphology

effects and various failure criteria, has been studied extensively (for example Herrmann and Roux, 1990;

Jeulin, 1993). However, the above compatibility effects have not been considered analytically.

Recently, Altus and Givli (2003) studied the effect of moduli heterogeneity on strength reliability of
isotropic beams, where local strength and moduli were independent (non-correlated) material properties. In

practice, many materials exhibit strong correlation between these two parameters. For example, in the case

of polycrystals, both strength and local modulus depend on crystal orientation. Other examples are porous

ceramics or rocks, for which the average tensile strength and Young�s modulus are strongly correlated with

local density, such that moduli and strength are related through a power law (Kim et al., 2002; Coquard

et al., 1994; Nanjangus et al., 1995; Kingery et al., 1976). Interestingly, the power law relation was found

even for bones (Keyak et al., 1994; Keller et al., 1989, 1990). In another work (Snead et al., 1995), a strong

correlation between strength and moduli was found in ceramics by ion radiation treatment.
This paper studies the effect of moduli morphology on strength reliability of statically indeterminate

isotropic structures, and includes the effect of local strength-moduli correlation (SMC). The study is pre-

sented in the following order: Section 2 introduces the necessary background material: mathematical no-

tations of convolutions, basic functional operations, relations of stochastic strength, weakest link, functional
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relation between stress and morphology and the local SMC. Section 3 includes the main theoretical devel-

opment and analysis by the functional perturbation method (FPM). Analytical examination of limit cases is

outlined in Section 4 and full numerical examples are detailed in Section 5, including a consideration of

morphology dependent size effect for strength. Major conclusions are summarized in Section 6.
2. Basic relations and operations

The aim of this section is to outline the basic relations that will be needed for the FPM analysis. Section

2.1 reviews some functional operations, and Section 2.2 summarizes the essential beam bending relations

from previous study (Altus and Givli, 2003). Section 2.3 discusses the relation between local stiffness and

local strength in heterogeneous materials, and Section 2.4 introduces the basic concepts in evaluating the

strength of heterogeneous structures that include local SMC, by the weakest link approach.

2.1. Background on functional operations

The Dirac two point singular operator, is defined by (Beran, 1967):
dS1

dS2

¼ dSðx1Þ
dSðx2Þ

¼ dðx1 � x2Þ; ð2:1aÞ
where S1 � Sðx1Þ, etc. for convenience. The notation of the d symbol is common for both the Dirac function

and functional derivatives. This duplicity will not cause any confusion. Thus,
Sðx1Þ ¼
Z

dðx1 � x2ÞSðx2Þdx2; S ¼ d � S; ð2:1bÞ
where (�) is the convolution symbol. It can be shown that (2.1a) and (2.1b) contain essentially the same

definition of d. Simple integration is written with the aid of a unit function 1ðxÞ, i.e.,
Z
SðxÞdx ¼ S � 1: ð2:2Þ
Additional operations with generalized functions can be found elsewhere (Kanwal, 1983).

Now consider a functional F fSðxÞg and notice the different notations used here (and throughout) to

distinguish between a function ( ) and a functional { } relation. For any function uðSÞ, or functional F fSg,
we have two kinds of differentiations, noted by
dF fSðxÞg
dSðx1Þ

� dF
dS1

� dF;S1 ;
ouðSÞ
oS

¼ ou;S ; ð2:3Þ
where the short notations are used for convenience. Using (2.1) we have also
duðSÞ
dS1

¼ ou;SdS;S1 ¼ ou;Sd1; ð2:4Þ
where d and o are used to distinguish between the two types of differentiations, when necessary. When the

type of differentiation is clear from the text, no special symbol will be given. F can be functionally expanded

by a Taylor series as
F fS0 þ S0g ¼ F fS0g þ F;S1 � S0
1 þ 1

2
F;S1S2 � �ðS0

1S
0
2Þ þ � � � ; ð2:5Þ
F;S1 and F;S1S2 are first and second (outer) functional derivatives with respect to S1 and S2 at S0. The above

expansion is a fundamental tool in the ‘‘FPM’’, used herein. For example, note the following two func-
tionals:
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F fSðxÞg ¼ vðxÞ � S ! F;S1 ¼ v � dS
dS1

¼ v � d1 ¼ v1; ð2:6Þ
F fSðxÞg ¼ ðv � SÞ�1 ! F;S1 ¼ �ðv � SÞ�2u1 ! F;S1S2 ¼ 2ðv � SÞ�3v1v2; ð2:7Þ
where v1 ¼ vðx1Þ, d1 ¼ dðx� x1Þ, etc. Mixed derivatives of more complex functional expressions will be also

needed in the text. For example, if
/ ¼ F ðS1Þ � G½fS2g; f1�; f1 � f ðx1Þ; ð2:8Þ
where the integration is over the variable with the common index (here x1), then
/;S3 ¼
dF ðS1Þ

dS3

� Gþ F ðS1Þ �
dG
dS3

¼ oF ðS3Þ
oS3

G½fS2g; f3� þ F ðS1Þ �
dG½fS2g; f1�

dS3

; ð2:9Þ
where the Dirac property (2.1b) has been used.
2.2. Background on strength and reaction forces

Consider a 1D rod under a distributed stress field rðxÞ. Define the failure probability of a reference

element of length ‘, subjected to a uniform stress �rr by
F‘ð�rr; ‘Þ ¼
Z �rr

0

f‘ðr0; ‘Þdr0; ð2:10Þ
where F and f are the failure probability and density, respectively. By the weakest link approach for

strength (Davidge, 1979), and for loads of low failure probability (small stresses, high reliability), a power

law approximation for F‘ðrÞ is possible (Altus and Givli, 2003):
F‘ð�rr; ‘Þ ffi
�rr
r‘

 !b

; ð2:11Þ
where b is identical to the shape parameter when Weibull distribution for F is used. Furthermore, the

failure probability of a rod of length L, having a distributed stress field rðxÞ is
F ðrðxÞ; LÞ ¼ L
‘

Z 1

0

F‘ðrðxÞ; ‘Þdx: ð2:12Þ
Consider now a clamped––simply supported beam (indeterminacy of degree 1), shown schematically in
Fig. 1. The internal bending moment is
Fig. 1. A beam with one degree of indeterminacy.



S. Givli, E. Altus / International Journal of Solids and Structures 40 (2003) 6703–6722 6707
MðxÞ ¼ MR þMq; MR ¼ Rx; Mq ¼
Z x

x1¼0

q1ðx� x1Þdx1: ð2:13Þ
R is the reaction force at x ¼ 0. MRðxÞ and MqðxÞ are the internal bending moment distributions caused

independently by R and qðx1Þ, respectively. R is found by the compatibility condition:
ðMxÞ � S ¼ 0; S ¼ ½EI ��1
; ð2:14Þ
where (2.13) has been used. SðxÞ is the cross-sectional bending compliance, E is Young�s modulus and I is

the appropriate cross-sectional inertia term. For convenience, normalized quantities will be used through-
out, i.e.,
S ! S
hSi ; x ! x

L
; hSi ! 1: ð2:15Þ
Nevertheless, whenever the average compliance is used, we will keep the notation S ¼ hSi instead of

S ¼ 1 for clarity. The beam morphology is considered as statistically homogeneous, therefore hSi stands for
both the spatial and ensemble averages, and is not a function of x. From (2.13) and (2.14), a functional

expression for the reaction force is obtained:
R ¼ � ½Mqx� � S
x2 � S ; ð2:16Þ
which shows that R is independent of moduli for a homogeneous beam.

2.3. Local stiffness–strength correlation

When material exhibits strong correlation between Young�s modulus and strength, (2.11) is generalized

to
F‘ ffi
�rr

rSðSÞ

 !b

; ð2:17Þ
where rSðSÞ can be interpreted as an estimate for the average failure stress of a reference element with cross-

sectional compliance S. For example, if a linear relation between strength and Young�s modulus is assumed,

as discussed above for porous ceramics, we write
rSðSÞ / E ¼ 1

S
; ð2:18Þ
and (2.17) becomes
F‘ ¼
�rr

r0 � 1
S

 !b

¼ Sb �rr
r0

 !b

; r0 ¼ rSðS ¼ 1Þ: ð2:19Þ
For a general relation between local strength and modulus, it is convenient to write
F‘ ¼
�rr

r0 � �rr0ðSÞ

 !b

¼ hðSÞ � �rr
r0

 !b

; h ¼ ½�rr0ðSÞ��b
; ð2:20Þ
where r0 is independent of S, and h, �rr0 are non-dimensional functions of S such that
�rr0ðS ¼ hSiÞ ¼ hðS ¼ hSiÞ ¼ 1: ð2:21Þ
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From (2.20) and (2.21) we see that r0 can be conceived as the average failure stress of a reference element

which possesses a uniform modulus hSi. �rr0 is a relative measure of strength
�rr0ðSÞ ¼
r0ðSÞ

r0ðhSiÞ
: ð2:22Þ
hðSÞ has no direct physical interpretation, but holds some algebraic advantages that will lead to more

concise expressions. Thus, h will be used in the following, leaving �rr0 for the final expressions.
2.4. Weakest link approach involving local strength-modulus correlation (SMC)

The expressions in (2.17) and (2.20) indicate that if the local stiffness of the basic element is known, its

failure probability can be found explicitly. Using (2.20) and the weakest link principle, the failure proba-
bility of the whole beam for a given (i.e. arbitrary, not random) stiffness function SðxÞ, yields
FbjSðxÞ ¼
L
‘

hðSÞ � r
r0

� �b
 !

� 1 ¼ L
‘
� hðSÞ � r

r0

� �b

: ð2:23Þ
In the general case, when the stiffness is unknown explicitly (i.e. random), the failure probability of the

whole beam is just the average of all probabilities of all realizations of S. Therefore,
Fb ¼ hFbjSi ¼
L
‘

hðSÞ � r
r0

� �b
* +

: ð2:24Þ
Notice that in the particular case of static determinacy, since stresses are calculated from equilibrium

considerations only (independent of stiffness), we can write
F ðdetÞ
b ¼ L

‘
hhðSÞi � r

r0

� �b
" #

� 1: ð2:25Þ
Also, since hhðSÞi is considered as a constant with respect to the integration, (2.25) can be written in the

familiar form
F ðdetÞ
b ¼ L

‘

r
r�
0

� �b

� 1; r�
0 ¼ r0 � h�rr�b

0 i�1=b ¼ r0 � hhi�1=b ð2:26Þ
where r�
0 can be conceived as the average tensile strength of all reference elements with length ‘ that posses a

uniform (yet random) stiffness.
3. Strength of statically indeterminate heterogeneous beam

3.1. General solution

Consider the case of statically indeterminate heterogeneous beam shown in Fig. 2, for which the local

strength reliability and the compliance are related by (2.20). The reaction force R is a functional of the

compliance morphology S by (2.16). From (2.24) the general functional form of the beam failure proba-

bility is
Fb ¼ Fb½fhðSÞg;RfSg�: ð3:1Þ
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Fb is a functional of h and a function of R, whereas h is a function of SðxÞ and R is a functional of SðxÞ. In
case where local strength and modulus are independent, h is not a function of S and (3.1) reduces to
Fb ¼ FbðRfSgÞ; ð3:2Þ
and it is possible to write
Fb ¼ FbjhRi þ 1
2
oFb;RRjhRi � hR02i þ � � � : ð3:3Þ
Then, hRi and hR02i can be calculated separately from (2.16).

It is clear that this separation cannot be applied here and the FPM has to be generalized. For any given

realization, we have
FbjS ¼
L
‘

hðSÞ � r
r0

� �b
 !

¼ C � hðSÞ � wðMfSgÞ; ð3:4aÞ
where
w ¼ jM jb; C � L
‘
� B

r0

� �b

: ð3:4bÞ
B is the geometry factor, which relates the local surface stress to bending moment by the elementary Euler

beam relations. w is introduced here for mathematical convenience.

Note that Eqs. (3.4) consider failure due to near surface stresses only, appropriate for brittle materials
subjected to bending. In addition, the analysis is limited to a symmetric cross-section geometry, in which the

maximum and minimum bending stresses are found at equal distances, but on opposite sides from the

center of gravity.

In the general case of beams of random compliance, the failure probability of the beam is the average

failure probability of the ensemble, i.e.,
Fb ¼ hFbjSi ¼ C � hhðSÞ � wðMfSgÞi � FbfSg: ð3:5Þ

Thus, (3.5) exhibits a functional averaging with respect to SðxÞ, and not a parametric averaging. Using the

relation
SðxÞ ¼ 1þ S0ðxÞ ) d
dS

¼ d
dS0 ; ð3:6Þ
expansion of (3.5) into a series near hSi (i.e. hS0i ¼ 0) is written as
FbfS0g ¼ FbjS0¼0 þ dFb;S0 jS0¼0 � hS0i þ 1
2
d2Fb;S0S0 jS0¼0 � �hS0S0i þ � � � ð3:7Þ
in which the second term vanishes identically. Terms in the order of hS0S0S0i and higher are neglected. The

first term in (3.7) is the failure probability of the non-random (homogeneous) case, and the third is a

contribution of morphology-strength coupling, originated from the indeterminacy and SMC.

From (3.5) we obtain
dFb;S0
1
¼ C � dh;S0

1
� w



þ h � dw;S0

1

�
¼ C � oh1;S0

1
� w1



þ h � dw;S0

1

�
; ð3:8Þ
where the index notations are consistent with the definitions in Section 2. A second functional derivative

yields three types of expressions
d2Fb;S0
1
S0
2
¼ C � o2h1;S0

1
S0
1
� w1 � dðx1

h
� x2Þ þ oh;S0

1
� dw1;S0

2
þ oh;S0

2
� dw2;S0

1
þ h � d2w;S0

1
S0
2

i
: ð3:9Þ
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From (3.4b) we have that
dw;S0
1
¼ ow;jM j � ojM j;M � dM;S0

1
: ð3:10Þ
To calculate (3.10), note first that
jM j ¼ M � signðMÞ ð3:11Þ

and
signðMÞ ¼ 2HðMÞ � 1; ð3:12Þ

where H is the Heaviside (unit step) function at M ¼ 0. Thus, from (3.11) and (3.12) we obtain
ojM j;M ¼ signðMÞ þ 2dðMÞ ð3:13Þ
where d is the Dirac function. However, since dðMÞ is non-zero only when M ¼ 0, its contribution to the

following convolutions vanishes. Therefore, we disregard the second term of (3.13) and write
dw;S0
1
¼ signðMÞ � b � jM jb�1 � dM;S0

1
: ð3:14Þ
Evaluating the variation of (3.14) with respect to S0ðx2Þ yields
d2w;S0
1
S0
2
¼ bðb � 1Þ � jM jb�2 � dM;S0

1
� dM;S0

2
þ signðMÞ � b � jM jb�1 � d2M;S0

1
S0
2
: ð3:15Þ
Now, in order to calculate (3.7) using (3.15) and (3.14), we have to find first the expressions dM;S0 and

d2M;S0S0 at S0 ¼ 0. From (2.13) and (2.16)
MfS0g ¼ Mq �
ðMq � xÞ � ð1þ S0Þ

x2 � ð1þ S0Þ � x ð3:16Þ
which yields
dM;S0
1
¼
"
� Mq1 � x1
x2 � ð1þ S0Þ þ

ðMq � xÞ � ð1þ S0Þ � x21
ðx2 � ð1þ S0ÞÞ2

#
� x ð3:17Þ
and
d2M;S0
1
S0
2
¼ Mq1 � x1 � x22 þMq2 � x2 � x21

½x2 � ð1þ S0Þ�2

"
� 2

ðMq � xÞ � ð1þ S0Þ � x21 � x22
½x2 � ð1þ S0Þ�3

#
� x: ð3:18Þ
For simplicity, a single notation x is used for the location parameter in the above convolutions terms,

while formally different signs (x4, x5, etc.) have to be assigned. Evaluating (3.16)–(3.18) at S0 ¼ 0 yields
Mh ¼ Mq �
ðMq � xÞ � 1

x2 � 1
� x ð3:19Þ
and
dM;S0
1
jS0¼0 ¼ �Mh1 � x1

x2 � 1
� x; ð3:20Þ

d2M;S0
1
S0
2
jS0¼0 ¼

Mh1 � x1 � x22 þMh2 � x2 � x21
½x2 � 1�2

" #
� x; ð3:21Þ
where (3.19) has been used in (3.20) and (3.21). Finally, inserting (3.9), (3.14), (3.15), (3.20) and (3.21) into

(3.7) we obtain
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Fb ¼ C F ð0Þ
b



þ F ð1Þ

b þ F ð2Þ
b þ F ð3Þ

b

�
¼ F hom

b þ F het
b ; ð3:22Þ
where
F ð0Þ
b ¼ hjMhjb � 1; ð3:23aÞ

F ð1Þ
b ¼ 1

2
oh;ss � hS02i � jMhjb � 1 ð3:23bÞ

F ð2Þ
b ¼ 9

2
h � bðb
h

� 1Þ � ðjMhjb�2 � x2Þ � ðMh1x1Þ � ðMh2x2Þ

þ 2bðsignðMhÞjMhjb�1 � xÞ � ðMh1 � x1 � x22Þ
i
� �hS0

1S
0
2i; ð3:23cÞ

F ð3Þ
b ¼ �3b � oh;s � ðsignðMh1Þ � jMh1 j

b�1Mh2x1x2Þ � �hS0
1S

0
2i; ð3:23dÞ

F hom
b ¼ C F ð0Þ

b



þ F ð1Þ

b

�
; F het

b ¼ C F ð2Þ
b



þ F ð3Þ

b

�
: ð3:23eÞ
h and its derivatives are evaluated at hSi. The relation
x2 � 1 ¼ 1
3
; ð3:24Þ
and the symmetry of hS0
1S

0
2i have been used in (3.23c) and (3.23d).

The expressions in (3.22) and (3.23) provide an explicit solution for any given morphology, through the

two point correlation function hS 0S0i. The different terms of (3.22) are ordered in increasing complexity with
respect to morphology: F ð0Þ

b is independent of S, and corresponds to the failure probability of the homo-

geneous ensemble case (elastic modulus is not random). F ð1Þ
b is independent of morphology, and as will be

shown in the next section, it is related to the homogenized (very large or very small grain size) case. F ð2Þ
b

contains the morphology effect on failure probability for a material without strength-modulus correlation

(SMC). Finally, F ð3Þ
b describes the net SMC contribution.

For later use, it is important to examine the sign of F ð2Þ
b in (3.23c). Its first term is positive by symmetry

arguments. The second is positive except that signðMh1ÞMh, may be negative. However, in most cases the

major contribution to the convolutions comes from regions where ðx� x1Þ � 1, and therefore,
signðMh1ÞMh � signðMh1ÞMh1 > 0. Consequently, the second term is also positive and F ð2Þ

b itself is positive. It

means that non-uniform moduli always increase the probability of failure when no SMC is present. This is

not true for F ð3Þ
b , as will be shown in the following.
3.2. Another perspective on the form of the general solution (3.22)

The solution in (3.22) and (3.23) is an approximation. Its accuracy depends on the number of terms

taken in the multiple point probability series for the modulus SðxÞ. The series is of the form
Fb ¼ Fb0 þ Fb1 � hS0
1i þ Fb2 � �hS0

1S
0
2i þ Fb3 � � � hS0

1S
0
2S

0
3i þ � � � ; ð3:25Þ
where Fbi are functions of hSi and x1; x2; . . . ; xi. Usually, measurements of averages like hS0
1S

0
2 � � � S0

ni is an

enormous task for large n, and it is common to collect up to two points data (n ¼ 2) from practical pur-

poses. However, when the heterogeneity is not sufficiently small, the first three terms in (3.25) may not be

enough. To improve the accuracy without involving higher point probabilities, we notice first that by way
of measuring S0

1 and S0
1S

0
2, we have at our disposal the associated density functions p1ðSÞ and p2ðS1; S2Þ, i.e.,
hS0
1i ¼

Z
p1S0

1 � dS0
1; hS0

1S
0
2i ¼

Z
p2S0

1S
0
2 � dS0

1 dS
0
2: ð3:26Þ
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Knowing p1 and p2, we can find the averages of any function of S1 and S2. Specifically, we have that
hS0k
1 i ¼

Z
p1S0k

1 � dS0
1; hS0k

1 S
0m
2 i ¼

Z
p2S0k

1 S
0m
1 � dS0

1 dS
0
2: ð3:27Þ
Therefore, terms like hS0ni and hS0kS0ni contain only one and two point probability data, respectively.

However, they are included in the nth point (hS0
1S

0
2 � � � S0

ni) and nþ k point (hS0
1S

0
2 � � � S0

nþki) probability terms

of (3.25).

Now re-examining the initial form of Fb in (3.4). It is composed of terms of the form
ðS � f Þm and hðSÞ � fh; ð3:28Þ

which can be expanded to a series near hSi and averaged, as
hðS � f Þmi ¼ ðhSi � f Þm þ A1ðf1 � hS0
1iÞ þ A2ðf1f2 � �hS0

1S
0
2iÞ þ � � � ð3:29Þ
and
hðh � f Þi ¼ hhi � f ; ð3:30Þ

where
hhi ¼
X1
n¼0

1

n!
onh
oSn

� �
S¼hSi

� hS0ni: ð3:31Þ
The difference between (3.29) and (3.31) is that the terms in (3.29) contain increasing number of point
probabilities, while from (3.27), (3.31) contains only one point statistical data.

Returning now to (3.22) and (3.23) and comparing with (3.31), one can show by further expansion that

F ð0Þ
b and F ð1Þ

b are just the first two terms in the expansion of hhi. It is thus fruitful to include the rest of the

terms in the solution by writing
F hom
b ¼ ChhijMhjb � 1: ð3:32Þ
Using (3.32) instead of (3.23a,b), the overall solution is more accurate, without the need for higher point

probability data. In general, the key to the above modification is the presence of ‘‘degenerated’’ terms such

as hS0
1S

02
2 S

0
4i (where S0

3 does not appear) in the series approximation. Mathematically, it is a part of the 4th

order term of the expansion, but physically, it belongs to the 3-point probability function.

To demonstrate the difference between (3.32) and (3.23a,b), recall that in order to have the average

hhðSÞi, we need the whole ‘‘one point probability function’’ p1ðSÞ and not just the average and variance of S.
Therefore, we consider a particular example of a uniform distribution of S in the interval 0.5–1.5, i.e.,
p1ðSÞ ¼
1 ð0:5 < S < 1:5Þ
0 ðotherwiseÞ

� �
: ð3:33Þ
for which hSi ¼ 1 and hS02i ¼ 1=12. In Fig. 2, the exact hhi and its two terms approximation are plotted as

functions of b. The importance of using the exact form is evident for large values of b. A similar result is

expected for any other common pdf.

3.3. Effect of strength-modulus correlation (SMC) on reliability: general considerations

The main goal of the present study is to find what is the effect of SMC (i.e., F ð3Þ
b ) on the overall failure

probability (reliability) of the beam. Two relations are of interest
F ð3=hÞ
b ¼ F ð3Þ

b

F ðhomÞ
b

and F ð3=2Þ
b ¼ F ð3Þ

b

F ð2Þ
b

: ð3:34Þ
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The first is the SMC effect relative to the basic homogeneous case and the second is relative to the hetero-

geneity effect without SMC. Notice that both of them are invariant to the magnitude of the external load

(throughMh), and sensitive only to its shape. By the same arguments which led to the conclusion that the sign

of F ð2Þ
b is positive, it is easily seen that the sign of F ð3Þ

b in (3.23d) is governed by the sign of (�oh=oS). From
(2.20) we have
h;S ¼ �b�rr�b�1
0 �rr0;S ! signðh;SÞ ¼ �signð�rr0;SÞ: ð3:35Þ
Commonly, the strength decreases with increasing compliance. Therefore, the h;S is positive, leading to an
increased reliability.

The above can be explained intuitively as follows. For the same load and geometry, increasing the

stiffness of the beam locally (i.e., in the vicinity of some point only) is expected to increase the local stresses.

This means, that if we examine the beams at a certain point x, there will be a positive correlation between

the stiffness and the stress at that point. Now, if the strength is positively correlated with the stiffness (as

most materials do), it is negatively correlated with the compliance. This means that the strength is more

‘‘effectively dispersed’’, giving more ‘‘strength weight’’ to neighborhoods of higher stresses, as compared to

the case where it is un-correlatively spread. Therefore, the overall effect of F ð3Þ
b is by decreasing the failure

probability.

Since F ð2Þ
b and F ð3Þ

b have opposite signs, the overall heterogeneity effect on strength is not clear, and

depends on the particular structure and loading. Examples will be given in the next section.
3.4. Size effect of failure probability (reliability)

It was shown (Altus, 2001) that for loading functions f and g, in the case of small moduli correlation

distance:
f1 � hS0
1S

0
2i � g2 ffi khS02iðf1 � g1Þ; k ¼

hS0S0iðhÞ � 1

hS02i ; h ¼ jx2 � x1j: ð3:36Þ
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The length k is proportional to the ‘‘grain size’’, where ‘‘grain’’ has a generalized (more abstract) meaning

of a characteristic distance in which a statistical moduli correlation exists. For example, if we have a simple

case of a beam composed of equal size unidirectional elements, where the moduli inside each element is

uniform, and there is no moduli correlation between any two elements, then k is exactly the size of the
elements. Therefore, in a random media, k is loosely equal (of the same order) to the grain size.

Now consider two sets of beams of the same material and cross-section and lengths L1 and L2. Apply two

load distributions such that M ðL1Þ
h and M ðL2Þ

h are of the same shape and have the same magnitude (i.e., their

maximum value is also the same). Then, using (3.23) and (3.4), the ratio between the failure probabilities of

the two beams is of the form
F ðL1Þ
b

F ðL2Þ
b

¼ L1

L2

� �
1þ / � �hS 0S0iðL1Þ

1þ / � �hS 0S0iðL2Þ
; ð3:37Þ
where / ¼ /ðfMhg; x1; x2Þ is a functional of the loading shape. Without going into more details (example

will be given later), it is easily verified that
F ðL1Þ
b

F ðL2Þ
b

�����
k¼0

¼ F ðL1Þ
b

F ðL2Þ
b

�����
k!1

¼ L1

L2

� �
ð3:38Þ
which is identical to the classical ‘‘Weibull type’’ size effect for brittle materials. However, for a finite k,
(3.37) depends on the grain size too. With this respect, we can consider two possibilities. In the first, the
relative size for the two beams remains the same, therefore hS0S0iðL1Þ ¼ hS0S0iðL2Þ and (3.37) reduces to (3.38).

In the second, which is the more practical case, the two beams are cut from the same piece of material, and

their absolute grain size (kL) is the same, i.e.,
kðL2Þ ¼ L1

L2

kðL1Þ: ð3:39Þ
More on the meaning of k is found in Section 4.3. Inserting (3.39) in (3.37), we obtain for k � 1 the

form
F ðL1Þ
b

F ðL2Þ
b

¼ L1

L2

� �
1þ AkðL1Þ

1þ AkðL1ÞðL1=L2Þ
; ð3:40Þ
where A is a functional which depends on morphology and loading distribution. Therefore, the size effect
decreases when A is positive, and vice versa.
3.5. Heterogeneity effects on design loads

The heterogeneity effect can be ‘‘transferred’’ from the failure probability space into the allowable

loading space, i.e., finding how much the magnitude of the allowable (design) external loads is changed for

a given failure probability, due to material heterogeneity. From (3.23) we have
Fb ¼ ðkhom þ khetÞqb
0 ; ð3:41Þ
where q0 is the loading magnitude corresponding to a failure probability Fb. khom and khet are the relative

contributions due to strength randomness and moduli heterogeneity, respectively. Define
g ¼ khet
khom

� �
ð3:42Þ
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as the ratio which reflects the relative contribution of morphology on failure probability. Then, compare

two calculations for the same problem, with and without the heterogeneity part for the same reliability

prediction, i.e.,
khomðqhom
0 Þb ¼ ðkhom þ khetÞqb

0 : ð3:43Þ
Then, from (3.41) and (3.42), the morphology effect on the magnitude of the allowable load is obtained by
q0

qhom
0

¼ khom
khom þ khet

� �1=b

¼ ð1þ gÞ�1=b
: ð3:44Þ
4. Insight by limit cases

The failure probability of the beam can be calculated using (3.23) for any given external load (through
Mh), provided that the correlation function hS0S0i is known explicitly. Before going into explicit examples,

some general features of the solution are explored, which correspond to certain morphological limits.
4.1. Homogeneous ensemble

Consider the simplest case of a homogeneous ensemble, i.e. all beams (realizations) in the ensemble are

uniform, and posses the same stiffness. Then,
hS0
1S

0
2i ¼ hS02i ¼ 0 ) hhi ¼ hðhSiÞ ¼ 1 ) F ð1Þ

b ¼ F ð2Þ
b ¼ F ð3Þ

b ¼ 0 ð4:1Þ
and the failure probability (3.23) reduces to
Fb ¼ C � jMhjb � 1 ¼ CFbjS¼hSi ð4:2Þ
which is exact.
4.2. Uncorrelated local strength and modulus

When local strength and modulus are independent material properties, h is independent of S. From

(2.21) we obtain that
h ¼ 1: ð4:3Þ
Inserting (4.3) into (3.23), F ð1Þ
b and F ð3Þ

b vanish identically, and the failure probability of the beam reduces

to
Fb ¼ C � jMhjb � 1



þ 9
2

bðb
h

� 1Þ � ðjMhjb�2 � x2Þ � ðMh1x1Þ � ðMh2x2Þ

þ 2bðsignðMhÞjMhjb�1 � xÞ � ðMh1 � x1 � x22Þ
i
� �hS0

1S
0
2i
�
: ð4:4Þ
The expression in (4.4) is identical to the one obtained in a previous study (Altus and Givli, 2003), although
by a different approach.
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4.3. Small correlation length

Here we examine the case where the morphological correlation length is relatively small, i.e., hS0S0i
contributes to the integrals only when jx1 � x2j is small enough. By (3.36), when k � 1, the failure pro-
bability of the beam given by (3.22) yields
F ð0Þ
b þ F ð1Þ

b ¼ hhi � jMhjb � 1; ð4:5aÞ

F ð2Þ
b ¼ 1

2
� khS02i 9 � bðb

h
� 1Þ � ðjMhjb�2 � x2Þ � ðM2

h � x2Þ þ 18 � b � ðsignðMhÞ � jMhjb�1 � xÞðMh � x3Þ
i
;

ð4:5bÞ

F ð3Þ
b ¼ �3 � khS02i � b � oh;s

��
hSi � ðjMhjb � x2Þ; ð4:5cÞ
where the relation (2.21) has been used. The heterogeneity effect is proportional to the grain size and to the

compliance variance.

4.4. Infinitely long correlation length

The case of infinitely long correlation length is related to uniform beams. Yet, different from the

‘‘homogeneous ensemble’’ case, the value of the modulus of each beam (realization) is random. In this case,

stresses (reaction force) in the beam are immaterial, i.e. equal for all realizations. Therefore, the problem

can be considered as statically determinate, and using (2.25) we obtain
Fb ¼ F hom
b ¼ Chhi � ðMb

h � 1Þ: ð4:6Þ
Notice that the result in (4.6) is identical to (3.32). This means that the failure probability of the beam takes

the same value at both limits k ! 1 and k ! 0, and should posses at least one extremum value for some
finite grain size.
4.5. Very large b values

Examining the terms in (3.23), (3.31) and (3.32), it is seen that when b is very large (say, greater than 20),

the relative weights of the terms of Fb receive a distinct hierarchy. First note that
ðjMhjb � 1Þb�1 /
ðjM jmaxÞ

b

b

" #
; ð4:7Þ
where jM jmax is the largest value of the bending moment (i.e., the magnitude). Now examine the case h ¼ Sb

(2.18), for which
ðF hom
b Þb�1 /

ðjM jmaxÞ
b

b
Ab

" #
; ð4:8aÞ
where A is a parameter greater than 1. Also,
F ð2Þ
b b � 1 / bðjM jmaxÞ

b
h i

; ð4:8bÞ

F ð3Þ
b b � 1 / bðjM jmaxÞ

b
h i

: ð4:8cÞ
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Then, it is clear that for large b values, (4.8a) becomes dominant due to A, although none of the terms of

(3.23) vanishes.

Contrary to the above, when the strength is not correlated to the compliance, A ¼ 1 and (4.8c) vanishes

by (3.23d). Then, F ð2Þ
b is the dominant part. Therefore, the SMC plays a major role in the structure reli-

ability design.
5. Numerical examples

The effect of stiffness heterogeneity given by (3.32) and (3.23) reveals a complex and non-linear inter-

action between material morphology, local strength-stiffness correlation, and loading geometry. For

demonstration, three selected load distributions qðxÞ for the clamped-simply supported (Fig. 1) problem are

solved numerically: a concentrated moment at x ¼ 0, a uniformly distributed load, and a power form. The

distribution shapes of the internal bending moments Mh for the corresponding homogeneous beams are
F

M ð1Þ
h ¼ 3x� 2; M ð2Þ

h ¼ 4x2 � 3x; M ð3Þ
h ¼ 4

3
x10 � 1

3
x; ð5:1Þ
respectively. In all cases, a linear relation between strength and stiffness, as given in (2.18), is used.
5.1. Small correlation length

Inserting (5.1) into (4.6) and integrating, we obtain the effect of compliance heterogeneity on failure

probability of the beam as a function of b, k, hS02i and hhi. Recall that in order to obtain hhðSÞi, we need
more than the average and variance of S. Therefore, we consider again the probability density p1ðSÞ as in

(3.33) and k ¼ 1=10.
Using (4.5) and (3.44), the ratios Fb=F hom

b and q0=qhom
0 are plotted in Figs. 3 and 4 as a function of b for

the three loading cases (5.1). The morphology effect is the smallest for the concentrated moment M ð1Þ
h , and

largest for the high power distribution M ð3Þ
h . To understand why, recall that the contribution to the beam

failure from any segment of the beam is proportional to rb (2.17). Therefore, a small region along the beam,
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which has the highest stresses, has the major contribution to the failure probability. Then, notice that

the highest stresses in all three cases are close to x ¼ 1, where the local distribution in that region has a very

high gradient for M ð1Þ
h and very small one for M ð3Þ

h . High gradients near the maximum point means that
the highest stress region is very concentrated, and therefore the beam strength is practically affected by the

morphology of that small region only. This is equivalent to a beam with larger grains, which is more

morphology sensitive.

Figs. 3 and 4, show that morphology effects diminish for b ! 0 and b ! 1, as expected. However,

certain b values may possess reliability advantages, which are not negligible. To see the source of this

advantage, the two morphology parts F ð2Þ
b and F ð3Þ

b are plotted separately for the first two cases as seen in

Fig. 5. We see that the two have opposite effects on reliability, and that F ð3Þ
b is more dominant here. From

(3.23d), it is seen that F ð3Þ
b , which is the net SMC effect, is proportional to h;S at hSi. Thus, in the absence of

such correlation (h;S ¼ 0), a completely opposite effect is predicted, as found also in a previous study (Altus

and Givli, 2003).
5.2. Exponential two points correlation function

The effect of heterogeneity on strength in the examples above was calculated using (4.5) under the ap-

proximation of a small correlation length (k � 1), in order to explore the ‘‘b effect’’. In the following we

study the heterogeneity effect for the whole range of compliance correlation lengths, by choosing a common

two-point probability function:
hS0
1S

0
2i ¼ hS02i � exp

�
� jx1 � x2j

k=2

�
; ð5:2Þ
where k in (5.2) fulfills the definition in (3.36). Fig. 6 shows a comparison between an accurate (by nu-
merical integration) solution based on (5.2) and an analytical solution based on (4.5) for k � 1, for a
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uniform load distribution. The logarithmic scale is chosen for clear exposition to the whole range of k. As

expected, an extremum value of k exists, for which the reliability of the beam is the highest. It is also seen

that the analytical expression is a good approximation for k � 1, but its accuracy is also dominated by b.
Other types of external loading may yield different values, but the overall behavior is expected to be similar.
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Notice that when k ! 1 the internal bending moment is not random, and the problem reduces to a

statically determinate case, with a solution given by (2.25), identical to the homogeneous (k ! 0) case in

(4.5).

Using (3.39), the morphology influence on the size effect of Fb is examined for M ð1Þ
h (uniform loading

distribution) as seen in Fig. 7. L1=L2 ¼ 1=10 is chosen for demonstration purpose, so the line

F ðL2Þ=
b F ðL1Þ

b ¼ 0:1 represents the ‘‘classical’’ (power law) size effect (Hansen and Roux, 2000). It is seen that

the morphology effect is not negligible and that the correction may be either positive or negative, depending
on the correlation length k.
6. Discussion and conclusions

The effect of SMC on strength reliability was studied analytically by the FPM. The reliability was found

to be composed of three types of contributions, which add up to the final estimation: (I) calculation of a

homogeneous beam of average properties, (II) correction corresponding to beam heterogeneity for non-
correlated strength-moduli, and (III) specific SMC effect. For the examples studied, part III was more

dominant than II.

Other major conclusions from this study are

1. The FPM proves to be a powerful tool for analyzing stochastically heterogeneous materials. Its accuracy

is limited only by the number of point probabilities used and has no stability problems for small ‘‘ele-

ment size’’ as stochastic finite elements do (see also Altus and Totry (2003) for a buckling problem).

2. Exploiting the full morphological information of one and two point probability data, in addition to the
common hSi and hSSi values, increases the accuracy of the solution. However, the ability to do so de-

pends on the specific problem.

3. A positive SMC, increases the overall reliability of the heterogeneous beam, when compared to a structure

without such correlation, and having the same statistical properties. On the other hand, the heterogeneity
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itself has a negative effect on strength reliability. Therefore, the overall effect depends on the specific load-

ing shape.

4. An optimum grain-size was found (�0.3 L) for the example studied, for which the average failure pro-

bability is minimal, with a value, which strongly depends on b. This type of information may be useful
for future design with heterogeneous materials.

5. A non-classical morphology dependent size effect for strength was found, which deviate considerably

from the classical one.

Finally, the interaction between material morphology, loading geometry and strength distribution

function is complex and non-linear even for a case of a simple beam, having one degree of indeterminacy.

This can explain the difficulty in finding predictive tools for more general microstructures, and emphasizes

the need to develop new design tools for stochastically heterogeneous materials.
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