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Abstract

The strength reliability of linearly elastic, brittle, stochastically heterogeneous beams, is studied on the basis of the
weakest link approach. The analysis is formulated by a functional perturbation method, resulting in an analytical
solution of the failure probability of the beam. Heterogeneity (material morphology) is random and confined to lon-
gitudinal direction only, under Bernoulli assumptions. The problem is statically indeterminate and external loads are
not random. The stress field is random and functionally dependent on morphology. In particular, local strength is also a
function of modulus. Therefore, the strength reliability of the beam is morphology dependent, both through static
indeterminacy and local strength-modulus correlation. The above is also coupled with the probabilistic nature of
strength, associated with surface defects and irregularities. The case of single indeterminacy (clamped—simply sup-
ported beam) is investigated, for simplicity. It is shown that the strength of the beam is significantly affected by material
morphology and that the effect can be either positive (increased strength) or negative, depending on the strength-moduli
correlation. For example, for an effective grain size of L/10, and a compliance statistical variance of 1/12, the mor-
phology effect on the allowable design load, was found to be in the order of 10%. Calculation of size effect, corre-
sponding to strength, showed a complex, non-classical grain size dependency.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of structures involving spatially random material properties and/or random geometry has
been a major field of research for the past few decades. Interest has emerged from the motivation to find the
effective (bulk) elastic modulus in terms of microstructure morphology: Hill (1952) showed that the results
of Voigt (1887, uniform strain assumption) and Reuss (1929, uniform stress assumption) are upper and
lower bounds for the effective modulus. Finer bounds have been found using variational principles (Hashin
and Shtrikman, 1962), perturbation expansion (Kroner, 1986), homogenization and others methods
(Mason and Adams, 1999).
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In all of the above studies the size of the micro-scale was assumed to be significantly (few orders) smaller
than the macro-scale, and representative volume element (RVE) or effective (non-random) bulk properties
could be assumed. In recent years, technology progress poses new challenges in predicting the mechanical
behavior of stochastic heterogeneous structures for which such assumptions cannot be applied. For ex-
ample, micro-scale structures used in MEMS/NEMS devices are routinely manufactured from brittle
polycrystals (like polysilicon) in which the stress concentration volume is comprised of very few grains.
Nanowires and nanotubes which are expected to have important applications in computers, bioengineering
and communication, are locally anisotropic, having a non-negligible substructure size. Other examples are
porous ceramics (Nanjangus et al., 1995) and bones (Keyak et al., 1994), for which local mechanical
properties are random, and strongly dependent upon local density. In many cases, materials are linear
elastic, brittle, with dominant probabilistic strength distribution (Jones et al., 1999; Greek et al., 1999;
Sharpe et al., 1999; Namazu et al., 2000; Davidge, 1979). Recent studies show that the mechanical response
of these structures deviate significantly from the prediction based on effective properties (Mirfendereski
et al., 1992; Altus, 2001; Altus and Givli, 2003; Frantziskonis and Breysse, 2003).

Consider as a simple reference problem the strength reliability of a homogeneous Euler—Bernoulli beam,
subjected to a non-random external loading. For statically determinate cases, the stresses are independent
of moduli. Failure is governed by surface defects and their local stress variations, which are random.
Therefore, if the failure probability of a unit length of the beam is obtained experimentally, the strength
reliability of the whole beam can be found by direct integration, using the weakest link concept. This type of
problem has been studied extensively both for static (Elishakoff, 1983) and dynamic (Lin and Cai, 1995)
conditions.

Heterogeneous structures pose new challenges with regard to strength analysis, which can be divided into
two categories: (1) Consideration of local stress concentrations caused by compatibility requirements. These
are common in granular or polycrystal materials where high stress concentrations are found near grain
boundaries and other regions of abrupt moduli change. The problem has been addressed mainly by nu-
merical studies (Frantziskonis et al., 1997; Harder, 1999; Starzewski and Stahl, 2000; Barbe et al., 2000a,b).
(2) Considering cases of statically indeterminate heterogeneous structures, where reaction forces are ran-
domly coupled with moduli morphology (Altus, 2001) through external (global) compatibility conditions.

Both types exist in practice. Their source is similar, i.e., compatibility requirements, but of a different
type: the first is local (and is much more difficult to approach analytically), and the second is global. This
paper focuses on the heterogeneity effect of the second type only. Moreover, moduli heterogeneity is
confined to the beam’s longitudinal direction, for simplicity of derivation.

It should be noted that the general problem of strength of heterogeneous media, including morphology
effects and various failure criteria, has been studied extensively (for example Herrmann and Roux, 1990;
Jeulin, 1993). However, the above compatibility effects have not been considered analytically.

Recently, Altus and Givli (2003) studied the effect of moduli heterogeneity on strength reliability of
isotropic beams, where local strength and moduli were independent (non-correlated) material properties. In
practice, many materials exhibit strong correlation between these two parameters. For example, in the case
of polycrystals, both strength and local modulus depend on crystal orientation. Other examples are porous
ceramics or rocks, for which the average tensile strength and Young’s modulus are strongly correlated with
local density, such that moduli and strength are related through a power law (Kim et al., 2002; Coquard
et al., 1994; Nanjangus et al., 1995; Kingery et al., 1976). Interestingly, the power law relation was found
even for bones (Keyak et al., 1994; Keller et al., 1989, 1990). In another work (Snead et al., 1995), a strong
correlation between strength and moduli was found in ceramics by ion radiation treatment.

This paper studies the effect of moduli morphology on strength reliability of statically indeterminate
isotropic structures, and includes the effect of local strength-moduli correlation (SMC). The study is pre-
sented in the following order: Section 2 introduces the necessary background material: mathematical no-
tations of convolutions, basic functional operations, relations of stochastic strength, weakest link, functional
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relation between stress and morphology and the local SMC. Section 3 includes the main theoretical devel-
opment and analysis by the functional perturbation method (FPM). Analytical examination of limit cases is
outlined in Section 4 and full numerical examples are detailed in Section 5, including a consideration of
morphology dependent size effect for strength. Major conclusions are summarized in Section 6.

2. Basic relations and operations

The aim of this section is to outline the basic relations that will be needed for the FPM analysis. Section
2.1 reviews some functional operations, and Section 2.2 summarizes the essential beam bending relations
from previous study (Altus and Givli, 2003). Section 2.3 discusses the relation between local stiffness and
local strength in heterogeneous materials, and Section 2.4 introduces the basic concepts in evaluating the
strength of heterogeneous structures that include local SMC, by the weakest link approach.

2.1. Background on functional operations

The Dirac two point singular operator, is defined by (Beran, 1967):
% - SS(.X'])
8S2 - 6S()C2)

= 6()(1 —)CZ), (213)

where S; = S(x;), etc. for convenience. The notation of the  symbol is common for both the Dirac function
and functional derivatives. This duplicity will not cause any confusion. Thus,

S(r) = / 8(xi — 12)S(a)dvs, S =58, (2.1b)

where (x) is the convolution symbol. It can be shown that (2.1a) and (2.1b) contain essentially the same
definition of §. Simple integration is written with the aid of a unit function 1(x), i.e.,

/S(x)dx:S*l. (2.2)

Additional operations with generalized functions can be found elsewhere (Kanwal, 1983).

Now consider a functional F{S(x)} and notice the different notations used here (and throughout) to
distinguish between a function ( ) and a functional { } relation. For any function u(S), or functional F{S},
we have two kinds of differentiations, noted by

dF{S(x)} oF _ SF ou(S)

= T = = a 2.3
3S(r1) 88 v o5 — s 23)
where the short notations are used for convenience. Using (2.1) we have also
OulS) _ o5, = usn, (2.4)
6S1 ' '

where 6 and O are used to distinguish between the two types of differentiations, when necessary. When the
type of differentiation is clear from the text, no special symbol will be given. F can be functionally expanded
by a Taylor series as

F{So+8'} = F{So} + Fs, * S| + 3F 5,5, * %(S183) + -, (25)
Fs, and Fj, are first and second (outer) functional derivatives with respect to S; and S, at Sy. The above

expansion is a fundamental tool in the “FPM”, used herein. For example, note the following two func-
tionals:
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FISC} = o(x) « S — Fs =veso =vsd =0y 2.6)
1

FIS()} = (0x8)" = Fs =—(0%8)u — Fs=20x8) o, (2.7)

where v; = v(x;), 8; = 8(x — x;), etc. Mixed derivatives of more complex functional expressions will be also
needed in the text. For example, if

¢:F(S1)*G[{S2}afl}a fl Ef(xl)a (28)
where the integration is over the variable with the common index (here x;), then
OF(S)) 0G  OF(Sy) SG[{S,}, f1]
= F — = F —_— 2.
¢AS3 SSz * G + (Sl) * 5S3 6S3 G[{SZ}aﬁ] + (Sl) * 6S3 ’ ( 9)

where the Dirac property (2.1b) has been used.

2.2. Background on strength and reaction forces

Consider a 1D rod under a distributed stress field o(x). Define the failure probability of a reference
element of length ¢, subjected to a uniform stress & by

F[(ﬁ', Z) = Aaﬂ(alvg)dglv (210)

where F and f are the failure probability and density, respectively. By the weakest link approach for
strength (Davidge, 1979), and for loads of low failure probability (small stresses, high reliability), a power
law approximation for Fy(c) is possible (Altus and Givli, 2003):

A\ B
Fi(,0) = <i> , (2.11)

gy

where f is identical to the shape parameter when Weibull distribution for F is used. Furthermore, the
failure probability of a rod of length L, having a distributed stress field o(x) is

F(a(x),L):%/O Fi(a(x),£)dx. (2.12)

Consider now a clamped—simply supported beam (indeterminacy of degree 1), shown schematically in
Fig. 1. The internal bending moment is

W qx)

Fig. 1. A beam with one degree of indeterminacy.
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X
M(X)ZMR +Mq, MR :RX, Mq:/ ql(x—xl)dxl. (213)
x1=0

R is the reaction force at x = 0. Mg(x) and M,(x) are the internal bending moment distributions caused
independently by R and ¢(x), respectively. R is found by the compatibility condition:

(Mx)*S=0, S=I[E", (2.14)

where (2.13) has been used. S(x) is the cross-sectional bending compliance, E is Young’s modulus and 7 is
the appropriate cross-sectional inertia term. For convenience, normalized quantities will be used through-
out, i.e.,

S—>i X —

(s)’

Nevertheless, whenever the average compliance is used, we will keep the notation S = (S) instead of

S =1 for clarity. The beam morphology is considered as statistically homogeneous, therefore (S) stands for

both the spatial and ensemble averages, and is not a function of x. From (2.13) and (2.14), a functional
expression for the reaction force is obtained:

(s) — 1. (2.15)

N~ =

[Mx] * S

R=—
2xS

(2.16)
which shows that R is independent of moduli for a homogeneous beam.
2.3. Local stiffness—strength correlation

When material exhibits strong correlation between Young’s modulus and strength, (2.11) is generalized

_ B
F, = (%) , (2.17)

where g5(S) can be interpreted as an estimate for the average failure stress of a reference element with cross-
sectional compliance S. For example, if a linear relation between strength and Young’s modulus is assumed,
as discussed above for porous ceramics, we write

1
aS(S)ocEZE, (2.18)

and (2.17) becomes

_ B A\ A
n:( “1> :S/f<i>, o0 = o5(S = 1). (2.19)
O'O'E oo

For a general relation between local strength and modulus, it is convenient to write

_ B A\ A
F, = (m) =0(S) - <J_o> , 0=1[ou(S)] ", (2.20)

where oy is independent of S, and 0, 6, are non-dimensional functions of S such that
Go(S=(S))=0(S=(S)) = 1. (2.21)

to
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From (2.20) and (2.21) we see that gy can be conceived as the average failure stress of a reference element
which possesses a uniform modulus (S). 6y is a relative measure of strength
0(S)
0((S))

0(S) has no direct physical interpretation, but holds some algebraic advantages that will lead to more
concise expressions. Thus, 0 will be used in the following, leaving &, for the final expressions.

G(S) =

(2.22)

2.4. Weakest link approach involving local strength-modulus correlation (SMC)

The expressions in (2.17) and (2.20) indicate that if the local stiffness of the basic element is known, its
failure probability can be found explicitly. Using (2.20) and the weakest link principle, the failure proba-
bility of the whole beam for a given (i.e. arbitrary, not random) stiffness function S(x), yields

Flge :%(9(5)- (%>ﬁ> *1:%-0@)* <010>ﬁ (2.23)

In the general case, when the stiffness is unknown explicitly (i.e. random), the failure probability of the
whole beam is just the average of all probabilities of all realizations of S. Therefore,

Fy = (Rly) :[2<0(S)* <;>ﬁ> (2.24)

Notice that in the particular case of static determinacy, since stresses are calculated from equilibrium
considerations only (independent of stiffness), we can write

o B
R :% l(()(s» : <00> ] 1. (2.25)

Also, since (0(S)) is considered as a constant with respect to the integration, (2.25) can be written in the
familiar form

@ty Lo / NS —1/p

== =) x1, oy=00-(6,") =0y - (0) (2.26)
l\ g}

where o}, can be conceived as the average tensile strength of all reference elements with length ¢ that posses a

uniform (yet random) stiffness.

3. Strength of statically indeterminate heterogeneous beam
3.1. General solution

Consider the case of statically indeterminate heterogeneous beam shown in Fig. 2, for which the local
strength reliability and the compliance are related by (2.20). The reaction force R is a functional of the
compliance morphology S by (2.16). From (2.24) the general functional form of the beam failure proba-
bility is

Fy = R[{0(S)}, R{S}]. (3.1)
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F, is a functional of 6 and a function of R, whereas 0 is a function of S(x) and R is a functional of S(x). In
case where local strength and modulus are independent, 0 is not a function of S and (3.1) reduces to

F, = Ry(R{S}), (32)
and it is possible to write
Fy = Fy gy + 30F el ) - (R?) + -+ (3.3)

Then, (R) and (R") can be calculated separately from (2.16).
It is clear that this separation cannot be applied here and the FPM has to be generalized. For any given
realization, we have

. B
Eﬁ=%<ﬂ$*<a)>=C“%9*WM5H7 (34a)
where
V=M CE%(%)[;. (3.4b)

B is the geometry factor, which relates the local surface stress to bending moment by the elementary Euler
beam relations. y is introduced here for mathematical convenience.

Note that Egs. (3.4) consider failure due to near surface stresses only, appropriate for brittle materials
subjected to bending. In addition, the analysis is limited to a symmetric cross-section geometry, in which the
maximum and minimum bending stresses are found at equal distances, but on opposite sides from the
center of gravity.

In the general case of beams of random compliance, the failure probability of the beam is the average
failure probability of the ensemble, i.e.,

Fy = (Rls) = C-{0(S) » p(M{S})) = R {S}. (3.5)

Thus, (3.5) exhibits a functional averaging with respect to S(x), and not a parametric averaging. Using the
relation

3 3
=1 ' —_— = .
S =1+50) = =50 (3.6)
expansion of (3.5) into a series near (S) (i.e. (') = 0) is written as
Fb{S/} = F"b|5/:0 + 6Fb<5/|S;:0 * <SI> + %62Fb,S’S’|Sf:o * *<SIS/> S (37)

in which the second term vanishes identically. Terms in the order of (S'S’S’) and higher are neglected. The
first term in (3.7) is the failure probability of the non-random (homogeneous) case, and the third is a
contribution of morphology-strength coupling, originated from the indeterminacy and SMC.

From (3.5) we obtain

8Fs; = C (805 Y+ 085 ) = C- (8015 - + 05801 ), (3.8)

where the index notations are consistent with the definitions in Section 2. A second functional derivative
yields three types of expressions

8Foss, = C- [6201,s;s; Y8 —x2) + 00 - Sy + 00, - Sy g + 0 52Ws;s;]- (39)
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From (3.4b) we have that

SW,S; =0y - O|M]|,, - Mg, (3.10)
To calculate (3.10), note first that

M| = M - sign(M) (3.11)
and

sign(M) =2H(M) — 1, (3.12)
where H is the Heaviside (unit step) function at M = 0. Thus, from (3.11) and (3.12) we obtain

o|M|,, = sign(M) + 258(M) (3.13)

where 8 is the Dirac function. However, since 3(M) is non-zero only when M = 0, its contribution to the
following convolutions vanishes. Therefore, we disregard the second term of (3.13) and write

S5, = sign(M) - - |M|"" - 3M;. (3.14)
Evaluating the variation of (3.14) with respect to §'(x,) yields
SZW,s;s; =pp—1)-|Mm|"? M - dMg +sign(M) - B 17 52M,s’ls;- (3.15)
Now, in order to calculate (3.7) using (3.15) and (3.14), we have to find first the expressions 6M ¢ and
Mgy at §' = 0. From (2.13) and (2.16)
(M, -x) * (14 8)

MASE =M, == (3.16)

which yields

. . SN - x2
SMS’ — _ qul X1 : (Mq x)*(l+ )2 X1 X (317)
TS T @)
and
Mgy = My -x1 x5+ Mp '2x2 il _2(Mq x)x (145 -3x% X Cx (3.18)
& e (145 W e (145

For simplicity, a single notation x is used for the location parameter in the above convolutions terms,
while formally different signs (x4, xs, etc.) have to be assigned. Evaluating (3.16)—(3.18) at S’ = 0 yields

M, x)x1
M, = M, —%- (3.19)
and
M, - x|
SMaglyy = — =2, (3.20)
Mo -x1-x2 4+ M, -x - x2
PMgs gy = | E M (321)

2 1)

where (3.19) has been used in (3.20) and (3.21). Finally, inserting (3.9), (3.14), (3.15), (3.20) and (3.21) into
(3.7) we obtain
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Fy=C(RY +R" + K + FY) = Fom - B, (3.22)
where

FY = 0|M, | « 1, (3.23a)

B =100, (8% - M|} 1 (3.23b)

FY =30 BB~ 1)- (M 5x7) - (M, x1) - (M)

+ 2B(sign (M) My 5 x) - (M, - xy .xg)} «#(S/Sh), (3.23¢)
R = =3p-00, - (sign(My,) - [My, " Mi,xix2) 5 (S[S5), (3.23d)
pen—c(RY+R"),  Re=c(FP+FY). (3.23¢)

0 and its derivatives are evaluated at (S). The relation

¥xl=1 (3.24)

37
and the symmetry of (S7S}) have been used in (3.23¢) and (3.23d).

The expressions in (3.22) and (3.23) provide an explicit solution for any given morphology, through the
two point correlation function (§'S"). The different terms of (3.22) are ordered in increasing complexity with
respect to morphology: Fb(o) is independent of S, and corresponds to the failure probability of the homo-
geneous ensemble case (elastic modulus is not random). Fbm is independent of morphology, and as will be
shown in the next section, it is related to the homogenized (very large or very small grain size) case. Fb(2>
contains the morphology effect on failure probability for a material without strength-modulus correlation
(SMC). Finally, Fb(3) describes the net SMC contribution.

For later use, it is important to examine the sign of Fb(z) in (3.23c¢). Its first term is positive by symmetry
arguments. The second is positive except that sign(M,, )M;, may be negative. However, in most cases the
major contribution to the convolutions comes from regions where (x —x;) < 1, and therefore,
sign (M, )M, ~ sign(M,, )M, > 0. Consequently, the second term is also positive and Fb(z) itself is positive. It
means that non-uniform moduli always increase the probability of failure when no SMC is present. This is
not true for Fbo), as will be shown in the following.

3.2. Another perspective on the form of the general solution (3.22)

The solution in (3.22) and (3.23) is an approximation. Its accuracy depends on the number of terms
taken in the multiple point probability series for the modulus S(x). The series is of the form

Fy = Fio + For # (S)) + Fop # #(S1S5) + Fo # # # (S15,55) + -, (3.25)

where F,; are functions of (S) and xi,x,...,x;. Usually, measurements of averages like (S|S,---S) is an
enormous task for large n, and it is common to collect up to two points data (n = 2) from practical pur-
poses. However, when the heterogeneity is not sufficiently small, the first three terms in (3.25) may not be
enough. To improve the accuracy without involving higher point probabilities, we notice first that by way
of measuring S} and S}, we have at our disposal the associated density functions p; (S) and p»(S, $2), i.e.,

(8] = / pS,dSl, ()8 = / 8,5, - dS) dS,. (3.26)



6712 S. Givli, E. Altus | International Journal of Solids and Structures 40 (2003) 6703-6722

Knowing p; and p,, we can find the averages of any function of S; and S,. Specifically, we have that
(St) = / pSE-dsy,  (SfSy) = / SIS - dS dsy. (3.27)

Therefore, terms like (S”) and (S*S™) contain only one and two point probability data, respectively.
However, they are included in the nth point ((S}S} - --S;)) and n + k point ((S{S, - - - S, ,)) probability terms
of (3.25).

Now re-examining the initial form of £, in (3.4). It is composed of terms of the form

(S*f)" and 0(S) = fo, (3.28)
which can be expanded to a series near (S) and averaged, as

(S /)") = ((S) /)" + A (fy % (S1)) + A2 (fifa % #(S1S3)) + - - (3.29)
and

(0% 1)) =(0) = f, (3.30)
where

m-3

n=0

) o (sm. (3.31)

The difference between (3.29) and (3.31) is that the terms in (3.29) contain increasing number of point
probabilities, while from (3.27), (3.31) contains only one point statistical data.
Returning now to (3.22) and (3.23) and comparing with (3.31), one can show by further expansion that
©) and Fél) are just the first two terms in the expansion of (8). It is thus fruitful to include the rest of the
terms in the solution by writing

Erom — () |M,) + 1. (3.32)

Using (3.32) instead of (3.23a,b), the overall solution is more accurate, without the need for higher point
probability data. In general, the key to the above modification is the presence of “degenerated” terms such
as (S|S7S,) (where S; does not appear) in the series approximation. Mathematically, it is a part of the 4th
order term of the expansion, but physically, it belongs to the 3-point probability function.

To demonstrate the difference between (3.32) and (3.23a,b), recall that in order to have the average
(6(S)), we need the whole “one point probability function” p;(S) and not just the average and variance of S.
Therefore, we consider a particular example of a uniform distribution of § in the interval 0.5-1.5, i.e.,

|1 (05<8< 1))
pi(S) = 0 (otherwise) ' (3.33)
for which (S) = 1 and (S”) = 1/12. In Fig. 2, the exact () and its two terms approximation are plotted as
functions of . The importance of using the exact form is evident for large values of . A similar result is
expected for any other common pdf.

3.3. Effect of strength-modulus correlation (SMC) on reliability: general considerations

The main goal of the present study is to find what is the effect of SMC (i.e., Fb<3)) on the overall failure
probability (reliability) of the beam. Two relations are of interest
O

(3/h) 5y (3/2) b
B == and F77 = . (3.34)
2
Fb( om) Fb )




S. Givli, E. Altus | International Journal of Solids and Structures 40 (2003) 6703-6722 6713

10000

T T T

1000

T T T

100

T T T T

10

T T T T

1

0 30

Fig. 2. (0) calculated from a uniform distribution function (3.33), compared with a two-term approximation. {S”) = 1/12.

The first is the SMC effect relative to the basic homogeneous case and the second is relative to the hetero-
geneity effect without SMC. Notice that both of them are invariant to the magnitude of the external load
(through M,,), and sensitive only to its shape. By the same arguments which led to the conclusion that the sign
of thz) is positive, it is easily seen that the sign of Fb(3) in (3.23d) is governed by the sign of (—00/0S). From
(2.20) we have

0s=—Pa," 'a0s — sign(0s) = —sign(Gos). (335)

Commonly, the strength decreases with increasing compliance. Therefore, the 05 is positive, leading to an
increased reliability.

The above can be explained intuitively as follows. For the same load and geometry, increasing the
stiffness of the beam locally (i.e., in the vicinity of some point only) is expected to increase the local stresses.
This means, that if we examine the beams at a certain point x, there will be a positive correlation between
the stiffness and the stress at that point. Now, if the strength is positively correlated with the stiffness (as
most materials do), it is negatively correlated with the compliance. This means that the strength is more
“effectively dispersed”, giving more “‘strength weight” to neighborhoods of higher stresses, as compared to
the case where it is un-correlatively spread. Therefore, the overall effect of Fb(3> is by decreasing the failure
probability.

Since Fb(2> and Fb(3> have opposite signs, the overall heterogeneity effect on strength is not clear, and
depends on the particular structure and loading. Examples will be given in the next section.

3.4. Size effect of failure probability (reliability)

It was shown (Altus, 2001) that for loading functions f and g, in the case of small moduli correlation
distance:

(8'8") gy + 1

1% (S]Sy) * g» = A<S/2>(f1 xg), A= 5?)

s h = |X2 — X1 (336)
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The length A is proportional to the “grain size”, where “grain” has a generalized (more abstract) meaning
of a characteristic distance in which a statistical moduli correlation exists. For example, if we have a simple
case of a beam composed of equal size unidirectional elements, where the moduli inside each element is
uniform, and there is no moduli correlation between any two elements, then 1 is exactly the size of the
elements. Therefore, in a random media, 4 is loosely equal (of the same order) to the grain size.

Now consider two sets of beams of the same material and cross-section and lengths L; and L,. Apply two
load distributions such that M,sLl) and M,ELZ) are of the same shape and have the same magnitude (i.e., their
maximum value is also the same). Then, using (3.23) and (3.4), the ratio between the failure probabilities of
the two beams is of the form

Fng) B (l;l) 1—|—¢)**<S/S'>(Ll)
kaLz) L)1+ b * *<S’S’>(L2) ’

(3.37)

where ¢ = ¢({M,},x1,x,) is a functional of the loading shape. Without going into more details (example
will be given later), it is easily verified that

= (i—l) (3.38)

which is identical to the classical “Weibull type” size effect for brittle materials. However, for a finite 4,
(3.37) depends on the grain size too. With this respect, we can consider two possibilities. In the first, the
relative size for the two beams remains the same, therefore (§'S")“ = (§75")2) and (3.37) reduces to (3.38).
In the second, which is the more practical case, the two beams are cut from the same piece of material, and
their absolute grain size (AL) is the same, i.e.,

FéLl)

FéLz)

Fb(Ll)

o Fb(Lz)

=0

A—00

qe L (3.39)
L,

More on the meaning of 4 is found in Section 4.3. Inserting (3.39) in (3.37), we obtain for 1 < 1 the
form

YL 1+ 42
b :( 1) + (3.40)

FY \L) 1+ 42"(L, /L)

where 4 is a functional which depends on morphology and loading distribution. Therefore, the size effect
decreases when A is positive, and vice versa.

3.5. Heterogeneity effects on design loads

The heterogeneity effect can be “transferred”” from the failure probability space into the allowable
loading space, i.e., finding how much the magnitude of the allowable (design) external loads is changed for
a given failure probability, due to material heterogeneity. From (3.23) we have

Fi) = (khom + khet)qga (341)

where ¢ is the loading magnitude corresponding to a failure probability F,. kpom and kye are the relative
contributions due to strength randomness and moduli heterogeneity, respectively. Define

g = <h> (3.42)

khom
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as the ratio which reflects the relative contribution of morphology on failure probability. Then, compare
two calculations for the same problem, with and without the heterogeneity part for the same reliability
prediction, i.e.,

khom(QEOm)ﬁ = (khom + khet)qg- (343)

Then, from (3.41) and (3.42), the morphology effect on the magnitude of the allowable load is obtained by

qo ki, Vh 1/p
= om = (1 P 3.44
qgom (khom + khct ) ( + 1/]) ( )

4. Insight by limit cases
The failure probability of the beam can be calculated using (3.23) for any given external load (through

M,), provided that the correlation function (S'S’) is known explicitly. Before going into explicit examples,
some general features of the solution are explored, which correspond to certain morphological limits.

4.1. Homogeneous ensemble

Consider the simplest case of a homogeneous ensemble, i.e. all beams (realizations) in the ensemble are
uniform, and posses the same stiffness. Then,

Sy =(8"=0 = O =0(SNH=1 = FR'=F)=F" =0 (4.1)
and the failure probability (3.23) reduces to
Fy=C-|M|" «1=CRls_ (4.2)

which is exact.

4.2. Uncorrelated local strength and modulus

When local strength and modulus are independent material properties, 0 is independent of S. From
(2.21) we obtain that

0=1. (4.3)

Inserting (4.3) into (3.23), Fb“) and th3> vanish identically, and the failure probability of the beam reduces
to

Fy=C (1Ml 143 B(B = 1) - (M) 522) - (M, 1) - (M)
o+ 2B(sign(M)IM|*" 5 x) - (M, - x1 - 3)] 1 (S5 ) (4.4)

The expression in (4.4) is identical to the one obtained in a previous study (Altus and Givli, 2003), although
by a different approach.
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4.3. Small correlation length

Here we examine the case where the morphological correlation length is relatively small, i.e., (S'S")
contributes to the integrals only when |x; — x,| is small enough. By (3.36), when 1 < 1, the failure pro-
bability of the beam given by (3.22) yields

RO +FY = (0) - Ml + 1, (4.52)

R =1 8™ [9- BB — 1) (My]/ > «22) - (M7 wx?) + 18 - - (sign(My) - My 5 ) (M )],
(4.5b)
FY = 3.8 - 69>S|<s> (M) 552, (4.5¢)

where the relation (2.21) has been used. The heterogeneity effect is proportional to the grain size and to the
compliance variance.

4.4. Infinitely long correlation length

The case of infinitely long correlation length is related to uniform beams. Yet, different from the
“homogeneous ensemble” case, the value of the modulus of each beam (realization) is random. In this case,
stresses (reaction force) in the beam are immaterial, i.e. equal for all realizations. Therefore, the problem
can be considered as statically determinate, and using (2.25) we obtain

Fy, = From = ¢(0) - (M! * 1). (4.6)

Notice that the result in (4.6) is identical to (3.32). This means that the failure probability of the beam takes
the same value at both limits 4 — oo and 4 — 0, and should posses at least one extremum value for some
finite grain size.

4.5. Very large f values

Examining the terms in (3.23), (3.31) and (3.32), it is seen that when f is very large (say, greater than 20),
the relative weights of the terms of F;, receive a distinct hierarchy. First note that

p

where |M|_ . is the largest value of the bending moment (i.e., the magnitude). Now examine the case 6 = S*
(2.18), for which

B
(M 5 1)y [—('M'm) ] @7)

B
(R o [OME”) A/f], (4.80)
where 4 is a parameter greater than 1. Also,
FOB > 1o [BIM])". (4.8b)

FOB > 1o [B(M1)']- (4.80)
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Then, it is clear that for large f values, (4.8a) becomes dominant due to 4, although none of the terms of
(3.23) vanishes.

Contrary to the above, when the strength is not correlated to the compliance, 4 = 1 and (4.8c) vanishes
by (3.23d). Then, Fb(z) is the dominant part. Therefore, the SMC plays a major role in the structure reli-
ability design.

5. Numerical examples

The effect of stiffness heterogeneity given by (3.32) and (3.23) reveals a complex and non-linear inter-
action between material morphology, local strength-stiffness correlation, and loading geometry. For
demonstration, three selected load distributions g(x) for the clamped-simply supported (Fig. 1) problem are
solved numerically: a concentrated moment at x = 0, a uniformly distributed load, and a power form. The
distribution shapes of the internal bending moments M, for the corresponding homogeneous beams are

MY =32, MY =43 M =K1l (5.1)

respectively. In all cases, a linear relation between strength and stiffness, as given in (2.18), is used.

5.1. Small correlation length

Inserting (5.1) into (4.6) and integrating, we obtain the effect of compliance heterogeneity on failure
probability of the beam as a function of f, 4, () and (0). Recall that in order to obtain (0(S)), we need
more than the average and variance of S. Therefore, we consider again the probability density p;(S) as in
(3.33) and 1 = 1/10.

Using (4.5) and (3.44), the ratios F,/F™™ and qo/¢t°™ are plotted in Figs. 3 and 4 as a function of f for
the three loading cases (5.1). The morphology effect is the smallest for the concentrated moment M,El), and
largest for the high power distribution Mf). To understand why, recall that the contribution to the beam
failure from any segment of the beam is proportional to ¢ (2.17). Therefore, a small region along the beam,

Fb 1 P ——— ¢
F(hom)
b

0.9 \K

N

A\
N

e Mh(l)
0.6 - M@
-~ W@
0.5
0.4 Il Il Il Il
0 5 10 15 20 25

B

Fig. 3. Effect of stiffness heterogeneity on the beam failure probability for the three loads in (5.1). (§?) =1/12, 2 =0.1.
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Fig. 4. Effect of 8 on the magnitude of allowable load, for the three load distributions in (5.1). (%) = 1/12, 2 =0.1.

which has the highest stresses, has the major contribution to the failure probability. Then, notice that
the highest stresses in all three cases are close to x = 1, where the local distribution in that region has a very
high gradient for M,f” and very small one for Mf). High gradients near the maximum point means that
the highest stress region is very concentrated, and therefore the beam strength is practically affected by the
morphology of that small region only. This is equivalent to a beam with larger grains, which is more
morphology sensitive.

Figs. 3 and 4, show that morphology effects diminish for f — 0 and f — oo, as expected. However,
certain f§ values may possess reliability advantages which are not negligible. To see the source of this
advantage, the two morphology parts F and F,” are plotted separately for the first two cases as seen in
Fig. 5. We see that the two have opposite effects on reliability, and that F is more dominant here. From
(3.23d), it is seen that ol , which is the net SMC effect, is proportional to 05 at (S). Thus, in the absence of
such correlation (6 s = 0), a completely opposite effect is predicted, as found also in a previous study (Altus
and Givli, 2003).

5.2. Exponential two points correlation function

The effect of heterogeneity on strength in the examples above was calculated using (4.5) under the ap-
proximation of a small correlation length (4 < 1), in order to explore the “f effect”. In the following we
study the heterogeneity effect for the whole range of compliance correlation lengths, by choosing a common
two-point probability function:

(5,5 = (52) - exp ( - %) 52)

where 4 in (5.2) fulfills the definition in (3.36). Fig. 6 shows a comparison between an accurate (by nu-
merical integration) solution based on (5.2) and an analytical solution based on (4.5) for A <« 1, for a



S. Givli, E. Altus | International Journal of Solids and Structures 40 (2003) 6703-6722 6719

Q) 0.1

W0 | e, )
(hom)
Fb 0

)

SR

02] \\/Fé?’)(%%) /
o\

V M RO (M)

0.8

0.7 -
-0 Accurate, =15
—-=— Approximate, =15

0.6 -o- Accurate, B=8 B
—e— Approximate, =8

0.5

0.01 0.1 A 1 10

Fig. 6. Heterogeneity effects on failure probability, as a function of compliance correlation length for two values of 5. Accurate ((3.23)
and (5.2)), and approximate (4.6) solutions. (S?) = 1/12, uniform distribution of external load.

uniform load distribution. The logarithmic scale is chosen for clear exposition to the whole range of 4. As
expected, an extremum value of A exists, for which the reliability of the beam is the highest. It is also seen
that the analytical expression is a good approximation for 2 < 1, but its accuracy is also dominated by fS.
Other types of external loading may yield different values, but the overall behavior is expected to be similar.



6720 S. Givli, E. Altus | International Journal of Solids and Structures 40 (2003) 6703-6722

0.12
Fp(L1)
Fp(L2)

011}

"Classic"
010|m==m—m— s e e e mmm e ———————-

0.09

0.08 Lol Lol Lol Lol Ll
0.0001 0.001 0.01 A 0.1 1 10 100

Fig. 7. Morphology dependent size effect (3.39) for L, /L, = 0.1, f = 8 compared to the classical value.

Notice that when 1 — oo the internal bending moment is not random, and the problem reduces to a
statically determinate case, with a solution given by (2.25), identical to the homogeneous (1 — 0) case in
(4.5).

Using (3.39), the morphology influence on the size effect of F, is examined for M,El) (uniform loading
distribution) as seen in Fig. 7. L;/L, =1/10 is chosen for demonstration purpose, so the line
Fb(LZ)/ Fb(m = 0.1 represents the “classical” (power law) size effect (Hansen and Roux, 2000). It is seen that
the morphology effect is not negligible and that the correction may be either positive or negative, depending
on the correlation length /.

6. Discussion and conclusions

The effect of SMC on strength reliability was studied analytically by the FPM. The reliability was found
to be composed of three types of contributions, which add up to the final estimation: (I) calculation of a
homogeneous beam of average properties, (II) correction corresponding to beam heterogeneity for non-
correlated strength-moduli, and (III) specific SMC effect. For the examples studied, part III was more
dominant than II.

Other major conclusions from this study are

1. The FPM proves to be a powerful tool for analyzing stochastically heterogeneous materials. Its accuracy
is limited only by the number of point probabilities used and has no stability problems for small “ele-
ment size” as stochastic finite elements do (see also Altus and Totry (2003) for a buckling problem).

2. Exploiting the full morphological information of one and two point probability data, in addition to the
common (S) and (SS) values, increases the accuracy of the solution. However, the ability to do so de-
pends on the specific problem.

3. A positive SMC, increases the overall reliability of the heterogeneous beam, when compared to a structure
without such correlation, and having the same statistical properties. On the other hand, the heterogeneity



S. Givli, E. Altus | International Journal of Solids and Structures 40 (2003) 6703—6722 6721

itself has a negative effect on strength reliability. Therefore, the overall effect depends on the specific load-
ing shape.

4. An optimum grain-size was found (~0.3 L) for the example studied, for which the average failure pro-
bability is minimal, with a value, which strongly depends on f. This type of information may be useful
for future design with heterogeneous materials.

5. A non-classical morphology dependent size effect for strength was found, which deviate considerably
from the classical one.

Finally, the interaction between material morphology, loading geometry and strength distribution
function is complex and non-linear even for a case of a simple beam, having one degree of indeterminacy.
This can explain the difficulty in finding predictive tools for more general microstructures, and emphasizes
the need to develop new design tools for stochastically heterogeneous materials.
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